
Collaborative Software Exploration with
Multimedia Note Taking in Virtual Reality

Adrian Hoff
adho@itu.dk

IT University of Copenhagen, Denmark

Mircea Lungu
mlun@itu.dk

IT University of Copenhagen, Denmark

Christoph Seidl
chse@itu.dk

IT University of Copenhagen, Denmark

Michele Lanza
michele.lanza@usi.ch

Software Institute @ USI Lugano, Switzerland

ABSTRACT
Exploring and comprehending a software system, e.g., as prepara-
tion for its re-engineering, is a relevant, yet challenging endeavour
often conducted by teams of engineers. Collaborative exploration
tools aim to ease the process, e.g., via interactive visualizations in
virtual reality (VR). However, these neglect to provide engineers
with capabilities for persisting their thoughts and findings.

We present an interactive VR visualization method that enables
(distributed) teams of engineers to collaboratively (1) explore a
subject system, while (2) persisting insights via free-hand diagrams,
audio recordings, and in-visualization VR screenshots.

We invited pairs of software engineering practitioners to use our
method to collaboratively explore a software system. We observed
how they used our method and collected their feedback and im-
pressions before replaying their findings to the original developers
of the subject system for assessment.

Video Demonstration—youtube.com/watch?v=32EIpf4V3b4

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Maintaining software; Software reverse engineering.

KEYWORDS
Software Visualization, Software Comprehension, Collaborative
Software Engineering, Virtual Reality
ACM Reference Format:
Adrian Hoff, Mircea Lungu, Christoph Seidl, and Michele Lanza. 2024. Col-
laborative Software Exploration with Multimedia Note Taking in Virtual
Reality. In 32nd IEEE/ACM International Conference on Program Comprehen-
sion (ICPC ’24), April 15–16, 2024, Lisbon, Portugal. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3643916.3644427

1 INTRODUCTION

©Adrian Hoff, Mircea Lungu, Christoph Seidl, Michele Lanza. 2024. This is the authors’ version of the work. It is posted here for your personal use. Not for redistribution.
The definitive version was published in the proceedings of the 32nd IEEE/ACM International Conference on Program Comprehension, https://doi.org/10.1145/3643916.3644427.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPC ’24, April 15–16, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0586-1/24/04
https://doi.org/10.1145/3643916.3644427

Figure 1: Screenshot taken from a user’s point of view while explo-
ring a system. A collaborator takes notes on a virtual whiteboard.

Understanding a software system is a crucial task, frequently
undertaken by groups of engineers [51]. For instance, it plays a
vital role when preparing for the re-engineering of legacy software
systems [45, 47], or for integrating a new member into a team.
Nevertheless, the sheer size and complexity of a subject system
or the engineers’ proficiency with a programming language can
hinder the software comprehension process. When attempting to
explore and comprehend a software system by solely studying its
source code, gaining an overview of its structure can be an intricate
task.

Software visualization tools are available to assist engineers in
gaining a comprehensive overview of a software system. These
tools visually portray various facets of a system’s structure, be-
havior, or evolution, offering an abstraction from the actual source
code [10, 12, 20]. However, there are limited options for software vi-
sualizations that facilitate collaborative exploration. This becomes
increasingly relevant in distributed developer teams [14, 28].

VR software visualization is an appropriate domain for collabora-
tion, which is why state-of the-art tools support it [29, 30]. However,
existing approaches are limited, because they do not allow develop-
ers to take notes, posing a risk of valuable insights being lost.

We present a method that combines software exploration and
note-making within a VR setting (see Figure 1). Engineers are im-
mersed in an interactive 3D visualization of the source code of a
subject system, facilitating collaborative engagement and compre-
hension of its structure. To document observations and insights
in real-time, engineers have the capability to create virtual multi-
media whiteboards (inspired by the work of Hoff et al. [24]). These

https://orcid.org/0000-0002-5254-6246
https://orcid.org/0000-0003-3944-5261
https://orcid.org/0000-0003-4539-8297
https://orcid.org/0000-0003-4391-0197
https://www.youtube.com/watch?v=32EIpf4V3b4
https://doi.org/10.1145/3643916.3644427
https://doi.org/10.1145/3643916.3644427
https://doi.org/10.1145/3643916.3644427


ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adrian Hoff, Mircea Lungu, Christoph Seidl, and Michele Lanza

serve as a medium for pinning software elements from the visu-
alization, drawing freehand diagrams with tool assistance, jotting
down notes, as well as pinning recorded audio notes and captured
in-visualization screenshots of the VR surroundings.

Additionally, these virtual whiteboards remain accessible and
interactive outside the VR environment through synchronization
with an Integrated Development Environment (IDE), enabling fur-
ther examination and interaction, e.g., direct access to source code.

We used our method in an exploratory case study to investigate
and report on how practitioners engage with VR tools for collab-
orative software exploration and, based on that, provide lessons
learned for developers of similar tools. That is, we explored how
engineers engage with exploration methods akin to ours.
RQ1: How do engineers explore and take notes of a software system
in a collaborative VR software exploration and note taking tool?

RQ2: What strengths and weaknesses do engineers perceive in using
a collaborative VR software exploration and note taking tool?

Further, we studied the results of engineers’ explorations to
provide first impressions on the suitability of the approach.
RQ3: What type of insights do engineers extract from a system when
using a collaborative VR software exploration and note taking tool?

To answer these questions, we invited two pairs of developers
to use our method for exploring and comprehending a software
system they had not seen before. We observed their exploration and
note taking strategies (RQ1), gathered their comments and opinions
through questionnaires (RQ2), and scrutinized the insights they
accumulated on virtual whiteboards (RQ3) by consulting with the
original developers of the subject system, in order to verify the
accuracy and relevance of the accumulated information.

Our results show that participants engaged vividly in a collab-
orative software exploration in VR, appreciating especially the
architecture-level overview on the system’s structure, yielding cor-
rect insights.

2 BACKGROUND AND RELATEDWORK
Our method integrates collaborative software exploration and note-
taking in a VR software visualization, positioning it within twomain
research domains: software visualization and (re-)documentation.

2.1 Software Visualization
Software visualization entails the use of visual metaphors to depict
abstract and intangible concepts present in source code, with the
intention of aiding users in obtaining both a general understanding
and detailed insights into a software system’s structural, behavioral,
or evolutionary facets [10, 12, 20].

The visual metaphors employed range from abstract representa-
tions, such as graphs [6, 21, 32] or tree maps [25, 26], to real-world
inspired structures like solar systems [19, 22, 41], islands [37], and
cities [27, 35, 41, 48, 49]. Additionally, visual metaphors in software
visualization can be categorized based on their dimensionality into
2D [1, 33, 36] and 3D variants, with the latter further distinguishable
by the medium utilized, spanning standard 2D screens [46, 50, 52],
VR [15, 23, 38], and AR [17, 34, 43].

There is a noticeable gap in research focusing on collaborative
software exploration and understanding. Anslow et al. introduced

a method using an interactive touch-screen table for collabora-
tive exploration, providing different structural views of a subject
system [3]. This method is inherently designed for co-located col-
laboration. For distributed teams, research has explored VR as a
medium for collaborative software exploration. Koschke et al. pro-
vide a collaborative VR method with diverse views, i.a., for clone
detection or identifying architectural drift [28, 29]. Krause-Glau
et al. propose a method for behavioral aspects investigation in a
collaborative setting across various devices, including VR head-
sets [31]. While these contributions are valuable for collaborative
VR software exploration, they lack the means for engineers to take
notes on their insights, potentially leading to loss of valuable infor-
mation during prolonged sessions – which constitute a relevant use
case. We address this gap by proposing a method that integrates
collaborative note taking into the exploration process (Section 3).

Collaborative environments for software exploration exist mainly
for VR. They inadequately support concurrent note-taking, which is
essential for preserving insights.

2.2 Software Documentation and Note Making
Various techniques and tools exist to aid engineers in generating
notes and documentation on a software system’s source code.

These range from automated documentation generators like
RGB [39], Scribble [16], PAS [42], Re-Doc [2], and others [18, 40], to
more informal methods like freehand sketching on paper or white-
boards [4, 11]. The latter is particularly prevalent in collaborative
scenarios, providing a flexible medium for capturing ideas and in-
sights. In recent work, Hoff et al. proposed a VR-based sketching
method that enables engineers to pin elements from a software
visualization and, based on that, sketch diagrams directly on white-
boards [24]. Their method performs conformance checks between
the sketched diagrams and the source code, ensuring alignment.
However, so far, the method proposed by Hoff et al. was used in
only one study and that was not in a collaborative exploration set-
ting. Further, to thoroughly capture complex and extensive notes
during the software exploration process, we advocate for additional
mechanisms beyond freehand sketching, which are not present in
the previous work by Hoff et al.

While freehand sketching is a valuable tool for note-making in
software engineering, current VR-based methods need more versatility
to adequately capture long and complex notes.

3 COLLABORATIVE SOFTWARE
EXPLORATION AND NOTE TAKING IN VR

To support teams of engineers in collaboratively exploring software
systems, we propose a VR method that enables multiple engineers
to enter a shared synchronized virtual environment (each with
their individual head mounted VR device) to collaboratively ex-
plore a subject system while capturing thoughts and insights on
shared VR whiteboards via freehand sketching, audio recordings,
and in-visualization screenshots. Our method can be used in a local
network as well as over the internet, allowing distributed teams of
engineers to meet up in a virtual space to collaboratively explore a
system’s architecture and design, discuss ideas, and make notes.



Collaborative Software Exploration with Multimedia Note Taking in Virtual Reality ICPC ’24, April 15–16, 2024, Lisbon, Portugal

enlarge

public 
m

ethods

nested 
class

attributes

abstract
elements

class 
base

m
ethods w

ith 
restriced access

shrink

a

b

c d e

f g

h

i

j k l

m

Figure 2: Implementation of our VR software visualization method. Folders/packages are represented as colored nested spheres (a-c). Classes,
interfaces, etc. and their members are represented as stacks of cylinders (class cylinders), encoding meta information and structural metrics
via location, shading, and form (f-h). Engineers can interact with elements (d, e) to blend in visual relationships graphs (i, a), read code (m),
or scale the visualization up and down (j-l).

3.1 Collaborative Interactive VR Visualization
Our method supports teams of collaborating engineers in freely
exploring software systems in a top-down fashion [13], following
Schneiderman’s mantra “overview first, zoom and filter, details on
demand” [44]. It provides engineers with an overview of the folder-
level and class-level structure of a subject system, relationships
between elements on both these levels, synchronized mechanisms
for navigation and zoom, and details on demand on source code
as text. Our concepts are designed for subject systems written
in object-oriented programming languages. In the following, we
elaborate on these using Java as an example.

3.1.1 Architecture Level - Folder Spheres. To provide engineers
with an overview of the subject system, our method visualizes its
folder structure as hierarchy of nested semi-transparent spheres (see
Figure 2 a ), similar to the software landscapes by Balzer et al. [7, 8].
Each sphere represents one folder with constituent elements (i.e.,
class-level elements and sub-folders) contained inside it, arranged
in a circular layout parallel to the floor of the virtual environment c .
On system root level, all visual elements are contained in a root
folder sphere containing the entire subject system b .

Colors for Orientation. To help engineers with distinguishing
elements from different parts of the subject system, our method
determines colors for folder spheres based on the position of the
represented folder in the system’s hierarchy.

Legend
Folder Sphere

Class Cylinder

Containment, Parent Hue is Averaged

Containment, Child Hues are Inherited

Sa
tu

ra
tio

n

Hue
0°

10
0%

67
%

33
%

0%

90° 180° 270°135° 225°45°

Figure 3: Example folder sphere hierarchy depicting the color
scheme employed by our method.

Figure 3 depicts an example that illustrates the color distribu-
tion concept. Leaf-level folders are assigned evenly distributed hue
values while their nesting level determines the color’s saturation.
Hue values for all remaining folders result from the average of their
sub-folder colors’ hue.



ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adrian Hoff, Mircea Lungu, Christoph Seidl, and Michele Lanza

Interaction via Core. Depending on the amount and extents of
their contained elements, folder spheres vary in size. With their
semi-transparent look, they serve to guide engineers visually, cre-
ating an environment engineers can move through and stand in
without unintentionally triggering interactions. We consistently
manage interaction with folder spheres through a central core, see
Figure 2 c . These cores are uniform in size (independent of the
folder sphere’s radius), ensuring a standard interaction across the
system. Engineers have the option to grab cores for discussions
with peers or tap on them to access a user interface offering addi-
tional information and options d , such as selecting specific entity
relationships to display. When an engineer releases the core, it
automatically repositions itself back to the folder sphere’s center.

Opening/Closing Folder Spheres. To support engineers with fo-
cusing their investigation on relevant parts of a subject system,
the visualization allows adjusting the amount of details in a view
by opening and closing folder spheres. This is done via the folder
sphere’s core in a user interface or via hand gestures. When open-
ing a system for the first time, its root folder is opened by default
with all first-level folders visible but closed (cf. Figure 2 j and l ).
Thereby, our method limits the amount of information immedi-
ately presented to engineers - a feature that is useful for large
subject systems. Engineers open the visible folder spheres to look
into their directly contained elements. Closing a sphere hides all
constituent elements until opened again. The right-hand side of
Figure 2 b shows a folder sphere after opening with its sub-folders
spheres closed (compare with j and l ). Opening and closing
folder spheres is synchronized between all collaborating engineers.

While we considered a feature for opening all folders simulta-
neously, we decided against it to prevent users from becoming
overwhelmed and losing their overview of the system. Our inten-
tion is to promote a top-down approach to exploration. Additionally,
while our current implementation — favoring a simpler user inter-
action — does not allow engineers to completely hide folders and
thereby only display selected non-hidden content, a feature like
this could become valuable for navigating very large systems.

3.1.2 Class Level - Class Cylinders. Our method represents class-
level elements in a way that provides engineers with a rapid over-
view of their inner member-level structure by encoding informa-
tion in several visual properties: base cylinder, method cylinders,
attribute spikes, and nested class cylinders discussed below.

Base Cylinder. Every class cylinder consists of one base cylinder
that is colored according to the color of its containing folder (see
Figure 3 on the coloring concept and Figure 2 f as implemented).
Further, our method visually distinguishes between concrete and
abstract class-level elements via the surface shading of the base
cylinder. For instance, in Java, the base cylinder of a concrete class
is displayed with an opaque surface f whereas abstract classes
and interfaces receive a see-through wireframe surface to convey
the look of a less tangible and less concrete structure h .

Method Cylinders. Methods/functions of a class-level element are
represented as cylinders where structural metrics determine their
shape, i.e., the number of expressions in a method determines the
cylinder’s height while cognitive complexity [9] (driven primarily
by the depth of control flow splits) determines its radius.

To rapidly grant engineers an overview of the accessibility of
methods, cylinders for methods with unrestricted access (e.g., pub-
lic modifier in Java) are stacked on top of the base cylinder while
cylinders for encapsuled methods (e.g., private, protected, or pack-
age visibility in Java) are stacked underneath the base cylinder.
Figure 2 f depicts an example of a class with numerous public and
private methods with varying size and complexity.

Attribute Spikes. Attributes/fields of a class-level element are rep-
resented as evenly distributed spikes originating from the colored
base of a class cylinder, with unrestricted attributes being notably
longer than encapsuled attributes, see Figure 2 g .

Nested Class Cylinders. Nested class-level elements are repre-
sented using the above described mechanisms for regular classes,
with two deviations: (1) their base cylinder is notably smaller, i.e.,
half the size of a root-level class; and (2) to represent the structural
connection with their containing class-level element, nested class
cylinders are arranged in an evenly spaced circle around the nesting
class cylinder. As an example, the left-hand side of Fig. 2 f depicts
a nested class “DragMode” in a regular class “DiagramCanvas”.

Interaction. Engineers in VR can grab class cylinders and hold
them in their hands e , e.g., to show them to a collaborator in a
conversation. When released, the class cylinder smoothly returns
to its original position in the visualization. Further, engineers can
tip on the base cylinder, method cylinder, or attribute spikes of a
class cylinder with their virtual fingers to open detailed views with
additional information (see Sections 3.1.3 and 3.1.4).

3.1.3 Source Code Views. On demand, our method provides engi-
neers with a textual view of a visualized element via a synchronized
scrollable user interface, see Fig. 2 i . This interface shows the
source code of an element in the context of the file it is stored in.
For instance, the source code view for a method displays all code of
the containing file where it (1) initially scrolls to the location of the
selected method and (2) emphasizes it by graying out all leading
and trailing code. In Fig. 2 i the upper part of the presented code
is grayed out to highlight the currently displayed code section.

3.1.4 Relationships. Our method provides engineers with an over-
view of the relationships between elements via an interactive graph
based on statically analyzed references in the subject system’s code.
This relationship graph represents references as animated directed
lines between respective visual elements, originating from the mem-
ber that contains the reference and ending in the referenced element,
see Figure 2 a and i . Our method distinguishes between incoming
and outgoing references to or from a selected element as well as
between type references, method calls, and field accesses respec-
tively. Engineers can individually show and hide relationship lines
for each of these categories for a selected folder, class-level element,
method, or attribute via a synchronized user interface attached
to the respective visual element, see Figure 2 i . To reduce clut-
ter and visual complexity, relationship lines are bundled together
as they cross folder sphere boundaries, similar to the technique
proposed in [7, 8], see Figure 2 a . Displaying relationships for a
software element containing multiple members (i.e., folders and
class-level elements) summarizes all contained incoming/outgoing
relationships.



Collaborative Software Exploration with Multimedia Note Taking in Virtual Reality ICPC ’24, April 15–16, 2024, Lisbon, Portugal

n

o

p

q

r

s

t

u

vw

Figure 4: Implementation of our note making concepts in VR. While exploring a subject system, engineers can pick up a pen and freely
sketch on virtual whiteboards (n). They can pin software elements from the visualization (v, u) and draw tool supported diagrams (w). To
capture longer thoughts, they can create and pin sound recordings (o, p). Lastly, they can create and pin screenshots (q, r, s).

3.1.5 Navigation and Zoom. Engineers can freely navigate the
visualization and change their point of view, which is synchronized
in real time with all collaborators.

They can change their position by (1) teleporting through the
virtual space and (2) rotating around their virtual axis (a VR mech-
anism commonly referred to as “snap turning” or “snap rotation”).
To facilitate engineers’ potential experience with other VR tools or
games, these resemble standard VR navigation mechanisms present
in a majority of current VR applications. Further, they can use hand
gestures to (a) move/offset the entire visualization (i.e., the hierar-
chy of folder spheres with all constituent elements) and (b) zoom in
and out to change scale of the root folder sphere relative to the en-
gineer’s hand position, see Figure 2 j to l . To ensure a consistent
point of view on the system, these mechanisms are synchronized
between all collaborators. They offer fine-grain control over the
point of view on a subject system while mitigating entry barriers
by being operable when seated and in a small space.

3.2 Collaborative Note-Taking on VR
Multi-Media Whiteboards

Our method encompasses mechanisms for collaborative note taking
that enable engineers to persist insights and synchronize their un-
derstanding of a subject system while exploring it in VR: building
on work from Hoff et al. [24], engineers work with virtual white-
boards to (a) pin elements from a VR software visualization (such
as the folder spheres or class cylinders presented in Section 3.1) and
(b) pick up a virtual pen and sketch freely. Figure 4 n , v and u

illustrate these interactions. Software elements pinned to a white-
board are represented as pins displaying references between the
pinned software elements via curved relation lines. Further, the
method presented in [24] automatically interprets freehand drawn
shapes as outlines around pins (called modules) and relation-arrows
between these. Based on that, it provides engineers with confor-
mance checks between their sketches and the represented software
structures by coloring relation lines between pins. Our method
extends Hoff et al.’s work [24] with support for taking multi-media
notes during an ongoing collaborative exploration via: 1) synchro-
nized whiteboard interaction (3.2.1), 2) in-visualization screenshots
(“VR-shots”) (3.2.2), and 3) audio recordings (3.2.3).

3.2.1 Synchronized Whiteboard Interaction. We extend the VR
whiteboards presented in [24] by collaborative capabilities. For
one, engineers can grab and freely position whiteboards, which is
synchronized to their collaborators in real time. For another, we
extend the virtual whiteboards with support for concurrent edits,
see Figure 4 n . Freehand drawn notes and pins on a whiteboard
(including those presented in the remainder of this section) are
synchronized in real time so that the content of all whiteboards is
consistent across all collaborators.

3.2.2 In-Visualization Screenshots (“VR-Shots”). Our method en-
ables engineers to quickly capture and pin screenshots to a white-
board in VR, serving as a visual reference alongside other notes.

Engineers can take a screenshot by grabbing a virtual camera in
VR and pressing its trigger, see Figure 4 q and r . They can then



ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adrian Hoff, Mircea Lungu, Christoph Seidl, and Michele Lanza

pin the virtual print-out of the screenshot to a shared whiteboard s .
For instance, this can be used to capture a view on relationship
graph lines between two class cylinders in the visualization.

By tapping on pinned photos on a whiteboard, engineers re-
vert the visualization to its exact state at the screenshot’s capture,
including position, scale, folder spheres’ open/close statuses, and
relationship graph state, while simultaneously being teleported to
the screenshot’s location. A semi-transparent indicator marks the
camera’s position when the photo was taken, aiding in understand-
ing the photo’s perspective, see Figure 4 t . This implements a form
of save point for engineers to return to at later points in time.

3.2.3 Audio Recordings. Engineers can share longer and more de-
tailed thoughts using audio recordings while exploring a subject
system in VR, helping to free up their mental space. They do this
by picking up a virtual microphone, speaking their thoughts aloud,
and then pinning the recorded audio to a whiteboard as an audio
pin, see Figure 4 o and p . By tapping on audio pins, engineers
can play the recording, with playback shared in real-time among
all collaborators.

3.2.4 Synchronization with IDE. With the above mechanisms, our
method aims to support engineers in exploring and comprehending
a subject system while persisting thoughts and insights on virtual
whiteboards. Further, it synchronizes these whiteboards with an
IDE to make engineers’ accumulated thoughts and insights acces-
sible outside the VR environment. Figure 5 depicts an integration
into the Eclipse IDE; the whiteboard from Figure 4 is displayed in
the top-left area where engineers can zoom and pan, enlarge screen-
shots for detail inspection, play audio recordings, and directly open
the code of pinned software elements in the IDE code editor. This
feature bridges the gap between VR exploration and further use of
created notes for subsequent work outside of VR, e.g., to implement
planned changes.

4 CASE STUDYWITH PRACTITIONERS
We evaluated our method in an observational case study. Two
pairs of software engineering practitioners participated, using an
implementation of our VR method to explore a subject system
in an open and uninterrupted setting (Figure 6, left-hand side).
We collected their feedback through a post-session questionnaire.
Subsequently, we scrutinized the insights they accumulated on
virtual whiteboards and presented it to the original developers for
validation of accuracy and relevance (Figure 6, right-hand side).

4.1 Tool Implementation
We implemented the concepts presented in Section 3 in our tool Im-
mersive Software Archaeology1 (ISA). ISA employs a client-server
architecture, with the server ensuring real-time synchronization
and consistency of whiteboards and the visualization across clients.
The client is developed in C# with the Unity game engine, relying
on the SteamVR platform2 to make it compatible with all major VR
hardware. The server side is implemented in Java as part of ISA’s
ecosystem of Eclipse plug-ins where it integrates with an automated
software analysis. All code is open-source in ISA’s repository1.

1https://gitlab.com/immersive-software-archaeology
2https://store.steampowered.com/app/250820/SteamVR/

Figure 5: VR whiteboards are synchronized with an IDE where
they can be inspected an interacted with (top-left area) by zooming,
panning, playing audio recordings, and opening pinned elements.

4.2 Case Study Procedure
Our study is divided in two phases (cf. Figure 6), i.e., VR sessions
with software engineering practitioners (depicted on the left) and
subsequent result validation by the original developers of the sub-
ject system (shown on the right).

Exploring (Re-)EngineerLegend Original Developer

Exploration,
Note Taking

Post-Session 
Questionnaire

RQ1 RQ2 Insights RQ3

Developer 
QuestionnaireTutorial

VR
Sessions

Result 
Validation

Figure 6: Case study procedure: Two pairs of developers collabora-
tively explore a subject system and fill in a questionnaire (left-hand
side). We relay the gathered insights to the original developers and
assess their correctness and relevance (right-hand side).

4.2.1 VR Sessions. In a first step, we addressed RQ1 and RQ2
through VR sessions with pairs of software engineering practi-
tioners. Our tool supports both internet-based distributed setups
as well as local network connections. However, for our study, we
chose to have participants collaborate in the same room to facil-
itate a smoother introduction and especially to help with the VR
hardware. The VR sessions were structured in three main stages.

1. Tutorial (max. 30 minutes). Each VR session began with a brief
tutorial, explaining the tool’s visual metaphor and VR controls,
navigating the system and interacting with elements. Participants
and the experiment instructor (first author of this paper) went

https://gitlab.com/immersive-software-archaeology
https://store.steampowered.com/app/250820/SteamVR/


Collaborative Software Exploration with Multimedia Note Taking in Virtual Reality ICPC ’24, April 15–16, 2024, Lisbon, Portugal

Gray background 
in activity time- 
lines indicates 
periods in which 
participants spoke.

in Visualization

Source Code

on Whiteboard

Handwriting

Pinning

Ta
ki

ng
 N

ot
es

Ex
pl

or
in

g

Session 1

Session 2

Audio Recording

VR-screenshots

Raw Audio 
Soundwave

00:00 05:00 10:00 15:00 20:00 25:00 30:00 35:00 40:00 45:00 50:00 55:00

Figure 7: Timeline depicting participant activity in the two VR sessions. It shows for each participant the intervals in which they were
carrying out one of the activities listed on the left-hand side. Note that activity labels are magnified for one of the four participants due to
space constraints. Further, participants’ speech recordings are visualized, with intervals of actively speaking to one another highlighted.

through this process together in VR, following a predefined script.
The full tutorial script can be found in our online appendix3).

2. Exploration and Note Taking (min. 45 minutes). Following the
tutorial, the instructor briefly introduced the subject system (two
sentences) and read out the open experiment task: “Please explore
the system and make notes of your findings.” Subsequently, the
instructor did not intervene unless there were technical issues
or if participants requested help with controls or interaction. No
content-related assistance was given. The entire script is available
in our appendix3). The end result of each session was a set of VR
whiteboards with notes and audio recordings (see online appendix3).
Additionally, for both sessions, we video-recorded participants’ VR
point of view as well as audio of what they were saying.

3. Post-Session Questionnaire. After the VR sessions, each partici-
pant filled out an anonymous questionnaire on their own, sharing
their thoughts on the support provided by our method in collabo-
ratively exploring a software system and taking notes on gained
insights. The full questionnaire is available in our online appendix3.

4.2.2 Result Validation. In the second phase, we addressed RQ3
by forwarding participants’ insights from the VR sessions to the
subject system’s original developers using the post-session ques-
tionnaire3. For that purpose, we manually analyzed all handwritten
notes and audio recordings on the virtual whiteboards created by
participants of the previously conducted VR sessions, consulting
video recordings of the VR sessions to ensure accurate context
interpretation. We combined video recordings of participants’ VR
POV side-by-side, resulting in one video for each session. We then
manually analyzed these videos and extracted all notes written
on virtual whiteboards using the context provided by the video,
e.g., a conversation between participants. We included all insight
explicitly noted and display them in Table 2. Long audio pins com-
menting on multiple aspects resulted in multiple separate insights.
The subject system’s original developers subsequently evaluated
each insight for its accuracy and relevance (“How relevant is this
insight when planning potential changes to the system?”).

3https://doi.org./10.6084/m9.figshare.24499726

4.3 Subject System
Our study focuses on a Java Spring Boot web server backend API,
a component of a travel journey management system with approxi-
mately 10,000 lines of code. The system enables users to monitor
their travel activities, whether by plane, train, or visits to specific
locations. Key features include persistent access to travel data, a
user account system, search functionality, and friend management.
The system’s source code is publicly accessible4.

We chose this system for our study because we could contact the
original developers, a crucial aspect for validating our results. More-
over, Spring is among the most popular frameworks for building
enterprise applications and thus the system is a good representative
for a large class of relevant Java systems. However, note that our
visualization is not tailored for Spring applications.

4.4 Participants
Our only inclusion criterion for participants of the study was hav-
ing professional experience with Java development. We did not
explicitly seek participants experienced with Spring Boot or VR
and asked about contact with these technologies in our question-
naire. Four engineers from one company participated in our study,
all with limited VR experience prior to the study. One participant
reported having never used VR at all. Concerning their familiarity
with software systems akin to the subject system, three of the par-
ticipants confirmed their regular use of the Spring platform, while
one reported having previous, yet not extensive, experience with it.

4.5 RQ1: How do engineers explore and take notes of a
software system in a collaborative VR software
exploration and note taking tool?

Figure 7 depicts a timeline highlighting the activities and communi-
cation patterns of each participant in the study. We analyzed video
recordings for both sessions, categorizing participant activities into
seven distinct types: (1) exploring the system through inspecting
elements of the visualization (most notably folder spheres, class

4gitlab.com/usi-si-oss/teaching/projects-showcase/sa4/team-4-pufferfish/backend

https://doi.org./10.6084/m9.figshare.24499726
https://gitlab.com/usi-si-oss/teaching/projects-showcase/sa4/team-4-pufferfish/backend


ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adrian Hoff, Mircea Lungu, Christoph Seidl, and Michele Lanza

cylinders, relationship graphs), (2) exploring relationships between
elements on a virtual whiteboard (mostly re-arranging pins and
tracing relations via curved relation lines between pins), (3) exam-
ining and navigating source code on UI canvases, (4) handwriting
notes on a virtual whiteboard, (5) attaching software elements to
a whiteboard, e.g., in proximity to a handwritten note, (6) creat-
ing and pinning audio recordings to a virtual whiteboard, and (7)
capturing and pinning VR screenshots to a virtual whiteboard.

We summarize multiple interactions with the visualization under
point (1) since retrospectively determining the participants’ focus
during their visual exploration of a complex view comprised of
nested, semi-transparent folder spheres, numerous class cylinders,
and connecting relation lines is challenging to accurately pinpoint.

Varied Architectural Exploration. Throughout both sessions, par-
ticipants oscillated between exploring the overarching architecture
and inspecting source code details, mostly engaging in collabo-
rative work with occasional individual exploration. In Session 1,
participants adopted a top-down, breadth-first approach for explor-
ing the system’s architecture, employing a mix of examining the
visual elements of the visualization (i.e., folder spheres and class
cylinders) and pinning package folders to virtual whiteboards for
continued examination. They inspected source code when class-
level elements aroused their interest, though their primary focus
remained on comprehending the system’s architectural structure.
This pattern is visible in the activity timeline for Session 1, as shown
in Figure 7.

Participants in Session 2 adopted a more dynamic approach,
swiftly navigating through folder spheres and intermittently ana-
lyzing source code, driven by the spontaneous discovery of relevant
folders and classes. In Session 2, virtual whiteboards were scarcely
used for exploration purposes (cf. Figure 7).

Handwriting Varied Across Sessions. In both sessions, participants
made extensive use of handwriting for documenting insights, but
varied their strategies. Session 1 participants mainly wrote isolated
single words to provide context to clusters of pinned class-level
elements on the whiteboard, while participants in Session 2 pro-
duced more elaborate handwritten notes and supplemented them
with audio recordings. In both cases, whiteboard pins for software
elements and audio recordings were strategically located in relation
to handwritten notes.

VR Screenshots Not Utilized. None of the participants incorporated
VR screenshots in their virtual whiteboards. As far as we can tell,
participants did not experience scenarios in which they perceived
capturing an image of a specific part of the visualization or using it
as a save point for future reference as beneficial.

Ample Communication. Figure 7 shows for each participant both
their raw audio soundwave on our recordings of the VR session
as well as periods of time when they were speaking (as gray back-
ground behind the activity timelines). It shows that in both ses-
sions, participants were overwhelmingly active in communication
with only occasional short silent phases of individual source code
inspection. Furthermore, we observed discussion phases, where
exploration and note taking were temporarily halted to deliberate
on ideas, most notably in Session 1 ca. from minute 30 to 33.

Table 1: Stacked bar chart with participant responses from the post
VR session questionnaire. Bars are colored and sorted by participant
(see mapping of participants to colors in Figure 6). Bars extending
more to the right indicate stronger agreement or perceived use-
fulness. The answer of Participant 3 to Q7 was discarded due to a
misunderstanding of the question.

3.75

4.25

3.25

2.75

3.25

3.75

4.5

4.335

5

5

5

5

54 4

4

5 4

4 4

4

4 4

54

2

2 2

22

2

2

4

44

3 3

3

The VR tool provided a benefit to how 
I would usually have explored and 

taken notes on the software system.

Statement / QuestionNo. Avg.Agreement (Likert-Scale)

The VR tool helped me with exploring 
the subject system's architecture.Q1

Q2

Q3

Q7

Q4

Q5

Q6

Q8

The VR tool helped me with exploring 
the system's class-level elements.

The VR tool helped me with 
taking notes and documen-

ting the subject system.

How valuable do you assess the 
collaborative aspect of the VR tool?

How valuable do you assess 
the audio recording feature?

How valuable do you assess 
the camera feature?

How valuable do you assess 
the whiteboard as a whole?

4.6 RQ2: What strengths and weaknesses do engineers
perceive in using a collaborative VR software
exploration and note taking tool?

In the following, we provide a summary of the feedback collected
from participants of both VR sessions through a post-session ques-
tionnaire (cf. Figure 6). The questionnaire yielded participants’
quantitative verdict on the support they received for exploring
a subject system and taking notes on the results in VR (Table 1) as
well as qualitative data in terms of free text comments. A full version
with all verbatim comments is available in our online appendix3.

Exploration. Table 1 shows that participants assessed the support
they received in exploring significantly higher than the support
they received in taking notes (Q1&Q2 vs. Q3).

Further, Table 1 shows that participants valued the exploration
capabilities in VR especially for architecture-level aspects (Q1 vs.
Q2). In their comments, participants reported on a perceived ease
in obtaining an overview of the subject system, identifying relevant
software elements, and understanding their interconnections. Apart
from that, they wished for textual search for software elements and
reported on a general unfamiliarity with VR resulting in perceived
slow interaction with the tool: “I’m not used to VR, so I was slow to
perform the activities.”.

Note Taking. Participants’ overall merit of using VR to take notes
was mixed (cf. Table 1; Q3). On a positive side, they highlighted
the benefits of having unlimited space on the virtual whiteboards,
their integration with the rest of the visualization, and the resulting
high-level views on a subject system’s architecture. One participant
particularly emphasized the voice recordings and the ease of linking
audio to visual elements on the whiteboards. Conversely, criticisms
centered around the cumbersome nature of handwriting in VR with



Collaborative Software Exploration with Multimedia Note Taking in Virtual Reality ICPC ’24, April 15–16, 2024, Lisbon, Portugal

multiple related comments to an unfamiliarity with VR and the
need for more practice.

For audio recording, participants of Session 1 who did not use
the feature gave worse feedback (both giving a 2 on the Likert-scale,
Q4) than participants of Session 2 (who extensively used the audio
recordings, and who gave a 5 and 4 grade respectively).

Session 1 participants both justified their low scores with the
absence of an automated speech-to-text transcription feature, e.g.,
“I wouldn’t use it much because i prefer having written notes. Maybe
it would be useful if I could create a transcript from the recording”.

In accordance with our observations during the VR sessions,
participants perceived the virtual camera as underutilized, yet ap-
preciated (cf. Table 1; Q5): “I forgot to use it, but it certainly helps
to explore/move faster when switching between whiteboards and the
codebase”.

Overall, despite comments on requiring more practice to feel
comfortable with handwriting in VR, participants assessed the vir-
tual whiteboards as very useful (Q6).

Collaboration. Feedback on VR collaboration was mostly positive
(cf. Table 1; Q7) and in line with our observations and answer to
RQ1. As suggestions for future work, participants emphasized a
wish for locking elements in space that are shared between collab-
orators (especially whiteboards) so that they cannot be moved and
repositioned until unlocked again to avoid accidental interactions.

4.7 RQ3: What type of insights do engineers extract
from a system when using a collaborative VR
software exploration and note taking tool?

Table 2 lists all insights on the subject system captured by partici-
pants in form of handwritten notes and audio recordings on virtual
whiteboards. Session 1 yielded Insights I1.1 to I1.4, while Session 2
provided Insights I2.1 to I2.10. We investigated these insights to dis-
cern patterns and verified their accuracy and relevance by seeking
feedback from the original developers of the subject system via an
online questionnaire (available in our online appendix3).

Extracted insights. Session 1 participants focused on the system’s
overarching structure, adopting a strict top-down approach (cf.
answer to RQ1 above). This pattern is evident in their notes, which
exclusively covered system-level and architectural aspects without
addressing behavioral details.

Conversely, Session 2 participants adopted a use-case centered
exploration, focusing on more specific aspects of the system’s be-
havior and inner workings rather than system-wide aspects. They
started their exploration with the system’s test package, e.g., in-
vestigating example usages of different parts via unit tests. Thus,
notes of Session 2 participants touched upon testing (Insights I2.2
and I2.3) while the remaining notes capture the system’s behavior
form a user’s point of view.

Correctness. As per verdict of the original developers, the insights
participants noted during their VR sessions were largely correct
with an average of 4.43 on a scale from 1 (incorrect) to 5 (correct).
Only Insight I2.8 was clearly incorrect.

Relevance. As per the verdict of the original developers of the
subject system, the relevance of participants’ insights varied with
an average of 3.61 on a scale from 1 (irrelevant) to 5 (relevant).

Table 2: Stacked bar chart for feedback from the subject system’s
original developers on correctness and relevance of the insights
collected during both VR sessions. Each bar represents an answer
from one of the two original developers. Wider bars with higher
values indicate more correctness or perceived relevance.

The backend system does not have any 
sub-systems, it is a single big system with 

multiple responsibilities.

Participants‘ insights into the subject 
system, noted on virtual whiteboards

Feedback from Developers
RelevanceCorrectness

Among the system's modules are 
'controller' and 'service'.

The system uses server-side events for 
social media aspects, e.g., updating the 

trip feed, forwarding reactions to trips, etc.
All controllers interact with the 

authentication service.

The location service is isolated from the 
other services (they don't interact).

The system has both unit tests 
and integration tests.

There are todos in the test classes 
that should be looked into.

Journeys consist of lists of activities 
with visits to locations.

Users create and own journeys.

User profiles can be private or public.

Users can add one another as friends.

Friends can have trips together.

Users can react to trips of friends.

There is a feed of activities (trips) 
that is shared with friends.

I2.1

No.

I1.1

I1.2

I1.3

I1.4

I2.2

I2.3

I2.4

I2.5

I2.6

I2.7

I2.8

I2.9

I2.10

4 4 4

4 4 4

4

4

4

4

4

4

3

3

3

3 3

3 2

2

22

2

1

111

55

5 5

5 5

5 5

5 5

5 5

5

5

5

5

5

5

5 5

5

5

5

5

5

5 5

5 5

4.8 Discussion of Results and Lessons Learned
In the following, we summarize our results for RQ1-RQ3 and high-
light lessons learned from our case study for builders of related VR
tools. Overall, our study demonstrates that even practitioners with
minimal prior experience in VR software visualization can utilize
methods like ours for collaborative exploration and comprehension.

Key Suitability at Architecture-Level. Through observation and
direct participant feedback, we identified that a VR exploration and
multimedia note-taking environment primarily enhances work at
the architectural level as opposed to finer statement-level details.

Freehand Sketching in VR Requires Practice. Based on participant
actions and feedback, relying solely on handwriting and sketching
in VR for capturing insights can be tedious and time-consuming,
a situation that might extend beyond VR environments. However,
participants also noted improvements in their VR handwriting
skills even within the short duration of the case study sessions, an
observation made frequently in conversations between them, e.g.,
“I wrote ’friends’. Ah, the handwriting is getting better!”.

Audio Recordings Require Transcription. Audio recordings were
more favorably received than handwriting, although there was a



ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adrian Hoff, Mircea Lungu, Christoph Seidl, and Michele Lanza

clear desire for enhanced tool support in this area, mostly in terms
of automatic conversion of audio recordings to text.

VR Screenshots Require Further Investigation. While screenshots
were deemed valuable, they were not utilized in the VR sessions.
Additional research is necessary to explore this phenomenon, e.g.,
to investigate a correlation with the duration of VR sessions or in
usage spanning over multiple VR sessions.

Communication was Ample. There were clear signs of successful
collaboration among participants. This was evident not only from
our observations during the VR sessions but also from the constant
communication occurring throughout them, as depicted in the audio
waves in Figure 7. Participants utilized having different perspectives
on the same subject system and synchronizing their insights, e.g.,
one participant reading code, the other finding a mentioned method
through the relationship graph and exploring from there.

Accurate Results with Varying Relevance. In addressing RQ3, we
determined that participants in our case study produced results that
were accurate. The relevance of these results varied, which is under-
standable considering that we instructed participants to record all
noteworthy findings without specifically evaluating their relevance
in the constrained timeframe of the VR sessions. Although our find-
ings on the correctness of participants’ insights are encouraging,
further studies are needed to investigate their relevance, e.g., to find
correlations between insights, their correctness, and their relevance
(which we were not able to find in this work).

VR Requires Practice. A recurring theme in feedback and obser-
vations was the novelty and necessary practice associated with
both the method and VR as a technology in general. This applies
to both exploring software in VR and taking notes on the find-
ings as highlighted in participant feedback during the post-session
questionnaires.

4.9 Reflections and Threats to Validity
In the following, we discuss potential risks to our study’s findings
and our strategies to reduce their impact.

Participant Selection and Number. The preliminary case study
presented in this work was conducted with only four engineers
organized in two pairs that worked together. These were selected
by convenience, i.e., we contacted a company and asked for volun-
teering engineers willing to participate in the study. This indicates
a necessity for more extensive investigations to uncover additional
patterns in the behavior of a broader spectrum of engineers. Never-
theless, our study granted first insights into how practitioners use
a VR software exploration and note taking tool, how they assess
different tool features, what kind of information they extract from
it, and how accurate and relevant these are.

Subject System. The subject system used in our study comprises
10,000 lines of code. Results from our study must thus be interpreted
in a context of exploring similarly sized systems.

Further studies must be conducted to evaluate the scalability of
VR exploration and note taking tools for systems of significantly
larger scale. We opted for the subject system used in this study be-
cause we had access to its original developers, a unique opportunity
for assessing the results of participants’ exploration sessions.

Potential Response Biases. Response biases in studies can occur
due to question wording or social dynamics among participants or
between participants and interviewers [5]. In our study, this threat
potentially applies to feedback from VR participants as well as to
the result assessments of the subject system’s original developers.
To counteract response biases, we kept our experiment’s purpose
confidential until after its completion andminimized our interaction
with both participants and the subject system’s original developers.
With the latter, we had no contact prior to the study other than for
forwarding the insights collected by VR participants (initial contact
was established by a third party). Moreover, we gathered feedback
through anonymous, individually answered questionnaires. VR
participants completed these directly following their session.

5 CONCLUSION AND FUTUREWORK
Our method allows distributed software engineering teams to im-
merse into an interactive VR space to visually analyze and compre-
hend a subject software system. In this virtual space, engineers can
take multi-media notes on their observations and insights using a
variety of tools including freehand sketching, diagramming, audio
recordings, and screenshots.

We conducted a preliminary case study to investigate how pairs
of software engineering practitioners use our method to explore
a subject system. The participants, new to the system they were
exploring, provided valuable insights and feedback on different
VR features. Further, we assessed the accuracy and relevance of
their findings by consulting the system’s original developers. All
in all, despite requiring more practice to fully utilize our method
and VR technology, participants found our approach beneficial for
architectural exploration, exhibited vivid communication during
the sessions, and produced correct notes.

Future work will entail larger and more refined studies with ad-
ditional software engineering practitioners, and comparisons with
traditional (non-VR) collaborative software exploration methods
such as other kinds of software visualization and IDEs. Further, we
plan to study engineers’ interaction with exported notes in the IDE
(such as the one displayed in Figure 5). We also plan to enhance our
method based on participant feedback, especially on integrating
audio recordings with speech-to-text transcription and VR-friendly
search capabilities (e.g., also via a speech interface).

As a bottom line, it is crucial to interpret our findings within the
current technological landscape. Our participants were navigating
a novel technology and tool set. As VR technology becomes more
mainstream and engineers become more accustomed to similar
tools, we anticipate that the results and user experiences reported
here will improve.

To conclude, we remain optimistic about the potential of VR
methods to enhance collaborative software engineering practices.

ACKNOWLEDGMENTS
Hoff and Seidl are supported by the DFF (Independent Research
Fund Denmark) project “Immersive Software Archaeology (ISA)”
(0136-00070B). Lanza is supported by the Swiss National Science
Foundation (SNSF) project “INSTINCT” (Project No. 190113).



Collaborative Software Exploration with Multimedia Note Taking in Virtual Reality ICPC ’24, April 15–16, 2024, Lisbon, Portugal

REFERENCES
[1] Mohammad Alnabhan, Awni Hammouri, Mustafa Hammad, Mohammed Atoum,

and Omamah Al-Thnebat. 2018. 2D visualization for object-oriented software
systems. https://doi.org/10.1109/ISACV.2018.8354085 Pages: 6.

[2] Nicolas Anquetil, Káthia Oliveira, Anita Paulo, Laesse jr, and Susa Vieira. 2005.
A tool to automate re-documentation. (2005).

[3] Craig Anslow, Stuart Marshall, James Noble, and Robert Biddle. 2013. SourceVis:
Collaborative software visualization for co-located environments. In 2013 First
IEEE Working Conference on Software Visualization (VISSOFT). IEEE, Eindhoven,
Netherlands, 1–10. https://doi.org/10.1109/VISSOFT.2013.6650527

[4] Sebastian Baltes and Stephan Diehl. 2014. Sketches and Diagrams in Practice.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering. 530–541. https://doi.org/10.1145/2635868.2635891
arXiv:1706.09172 [cs].

[5] Sebastian Baltes and Paul Ralph. 2022. Sampling in software engineering research:
A critical review and guidelines. Empirical Software Engineering 27, 4 (2022), 94.

[6] M. Balzer and O. Deussen. 2004. Hierarchy Based 3D Visualization of Large
Software Structures. In IEEE Visualization 2004. IEEE Comput. Soc, Austin, TX,
USA, 4p–4p. https://doi.org/10.1109/VISUAL.2004.39

[7] M. Balzer and O. Deussen. 2007. Level-of-detail visualization of clustered graph
layouts. In 2007 6th International Asia-Pacific Symposium on Visualization. IEEE,
Sydney, NSW, 133–140. https://doi.org/10.1109/APVIS.2007.329288

[8] Michael Balzer, Andreas Noack, Oliver Deussen, and Claus Lewerentz. 2004.
Software landscapes: Visualizing the structure of large software systems. In IEEE
TCVG.

[9] G Ann Campbell. 2018. Cognitive complexity: An overview and evaluation. In
Proceedings of the 2018 international conference on technical debt. 57–58.

[10] Pierre Caserta and O Zendra. 2011. Visualization of the Static Aspects of Software:
A Survey. IEEE Transactions on Visualization and Computer Graphics 17, 7 (July
2011), 913–933. https://doi.org/10.1109/TVCG.2010.110

[11] Uri Dekel and James D Herbsleb. 2007. Notation and Representation in Collabo-
rative Object-Oriented Design: An Observational Study. (2007).

[12] Stephan Diehl. 2007. Software visualization: visualizing the structure, behaviour,
and evolution of software. Springer Science & Business Media.

[13] S. Ducasse and D. Pollet. 2009. Software Architecture Reconstruction: A Process-
Oriented Taxonomy. IEEE Transactions on Software Engineering 35, 4 (July 2009),
573–591. https://doi.org/10.1109/TSE.2009.19

[14] Christof Ebert, Marco Kuhrmann, and Rafael Prikladnicki. 2016. Global Software
Engineering: Evolution and Trends. In 2016 IEEE 11th International Conference on
Global Software Engineering (ICGSE). IEEE, Orange County, CA, USA, 144–153.
https://doi.org/10.1109/ICGSE.2016.19

[15] Florian Fittkau, Alexander Krause, and Wilhelm Hasselbring. 2015. Exploring
software cities in virtual reality. In 2015 IEEE 3rd Working Conference on Software
Visualization (VISSOFT). IEEE, Bremen, Germany, 130–134. https://doi.org/10.
1109/VISSOFT.2015.7332423

[16] Matthew Flatt, Eli Barzilay, and Robert Bruce Findler. 2009. Scribble: Closing the
Book on Ad Hoc Documentation Tools. (2009).

[17] Dussan Freire-Pozo, Kevin Cespedes-Arancibia, Leonel Merino, Alison Fernandez-
Blanco, Andres Neyem, and Juan Pablo Sandoval Alcocer. 2023. DGT-AVisualizing
Code Dependencies in AR. In 2023 Working Conference on Software Visualization
(VISSOFT). IEEE.

[18] Verena Geist, Michael Moser, Josef Pichler, Stefanie Beyer, and Martin Pinzger.
2020. Leveraging Machine Learning for Software Redocumentation. https://doi.
org/10.1109/SANER48275.2020.9054838 Pages: 626.

[19] Hamish Graham, Hong Yul Yang, and Rebecca Berrigan. 2004. A Solar System
Metaphor for 3D Visualisation of Object Oriented Software Metrics. (2004), 7.

[20] Denis Gračanin, Krešimir Matković, and Mohamed Eltoweissy. 2005. Software
visualization. Innovations in Systems and Software Engineering 1, 2 (Sept. 2005),
221–230. https://doi.org/10.1007/s11334-005-0019-8

[21] O. Greevy, M. Lanza, and C. Wysseier. 2005. Visualizing Feature Interaction in
3-D. In 3rd IEEE International Workshop on Visualizing Software for Understanding
and Analysis. IEEE, Budapest, Hungary, 1–6. https://doi.org/10.1109/VISSOF.
2005.1684317

[22] Adrian Hoff, Lea Gerling, and Christoph Seidl. 2022. Utilizing Software Archi-
tecture Recovery to Explore Large-Scale Software Systems in Virtual Reality. In
2022 Working Conference on Software Visualization (VISSOFT). IEEE, Limassol,
Cyprus, 119–130. https://doi.org/10.1109/VISSOFT55257.2022.00020

[23] Adrian Hoff, Michael Nieke, and Christoph Seidl. 2021. Towards immersive
software archaeology: regaining legacy systems’ design knowledge via interactive
exploration in virtual reality. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. ACM, Athens Greece, 1455–1458. https://doi.org/10.1145/
3468264.3473128

[24] Adrian Hoff, Christoph Seidl, Mircea Lungu, and Michele Lanza. 2023. Preparing
Software Re-Engineering via Freehand Sketches in Virtual Reality. In Proceedings
of the 39th IEEE International Conference on Software Maintenance and Evolution.
IEEE. https://www.inf.usi.ch/lanza/Downloads/Hoff2023b.pdf

[25] Danny Holten, Roel Vliegen, and Jarke van Wijk. 2006. Visualization of Software
Metrics using Computer Graphics Techniques. (Jan. 2006).

[26] Danny Holten, Roel Vliegen, and Jarke J. Van Wijk. 2005. Visual Realism for the
Visualization of Software Metrics. In In Proceedings of Visualizing Software for
Understanding and Analysis (VISSOFT 2005. Springer, 1–6.

[27] C. Knight and M. Munro. 2000. Virtual but visible software. In 2000 IEEE
Conference on Information Visualization. An International Conference on Com-
puter Visualization and Graphics. IEEE Comput. Soc, London, UK, 198–205.
https://doi.org/10.1109/IV.2000.859756

[28] Rainer Koschke and Marcel Steinbeck. 2021. Modeling, Visualizing, and Checking
Software Architectures Collaboratively in Shared Virtual Worlds. (2021).

[29] Rainer Koschke and Marcel Steinbeck. 2021. SEE Your Clones With Your Team-
mates. In 2021 IEEE 15th International Workshop on Software Clones (IWSC). IEEE,
Luxembourg, 15–21. https://doi.org/10.1109/IWSC53727.2021.00009

[30] Alexander Krause-Glau, Marcel Bader, and Wilhelm Hasselbring. 2022. Collab-
orative Software Visualization for Program Comprehension. https://doi.org/10.
1109/VISSOFT55257.2022.00016 Pages: 86.

[31] Alexander Krause-Glau, Malte Hansen, and Wilhelm Hasselbring. 2022. Col-
laborative program comprehension via software visualization in extended re-
ality. Information and Software Technology 151 (Nov. 2022), 107007. https:
//doi.org/10.1016/j.infsof.2022.107007

[32] M. Lanza and S. Ducasse. 2003. Polymetric views - A lightweight visual approach
to reverse engineering. IEEE Transactions on Software Engineering 29, 9 (Sept.
2003), 782–795. https://doi.org/10.1109/TSE.2003.1232284

[33] Mircea Lungu, Michele Lanza, and Oscar Nierstrasz. 2014. Evolutionary and col-
laborative software architecture recovery with Softwarenaut. Science of Computer
Programming 79 (Jan. 2014), 204–223. https://doi.org/10.1016/j.scico.2012.04.007

[34] Leonel Merino, Alexandre Bergel, and Oscar Nierstrasz. 2018. Overcoming Issues
of 3D Software Visualization through Immersive Augmented Reality. In 2018 IEEE
Working Conference on Software Visualization (VISSOFT). IEEE, Madrid, 54–64.
https://doi.org/10.1109/VISSOFT.2018.00014

[35] Leonel Merino, Mohammad Ghafari, Craig Anslow, and Oscar Nierstrasz. 2017.
CityVR: Gameful Software Visualization. (2017), 5.

[36] Roberto Minelli and Michele Lanza. 2013. SAMOA – A Visual Software Ana-
lytics Platform for Mobile Applications. In 2013 IEEE International Conference
on Software Maintenance. 476–479. https://doi.org/10.1109/ICSM.2013.76 ISSN:
1063-6773.

[37] Martin Misiak, Andreas Schreiber, Arnulph Fuhrmann, Sascha Zur, Doreen Seider,
and Lisa Nafeie. 2018. IslandViz: A Tool for VisualizingModular Software Systems
in Virtual Reality. In 2018 IEEE Working Conference on Software Visualization
(VISSOFT). IEEE, Madrid, 112–116. https://doi.org/10.1109/VISSOFT.2018.00020

[38] David Moreno-Lumbreras, Jesus M Gonzalez-Barahona, and Andrea Villaverde.
2021. BabiaXR: Virtual Reality software data visualizations for the Web. (2021).

[39] Michael Moser, Josef Pichler, Gunther Fleck, and Michael Witlatschil. 2015. RbG:
A documentation generator for scientific and engineering software. In 2015 IEEE
22nd International Conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, Montreal, QC, Canada, 464–468. https://doi.org/10.1109/SANER.
2015.7081857

[40] Sugumaran Nallusamy, Meei Hao Hoo, and Farizuwana Akma Zulkifle. 2021. Con-
trolled Experiment for Assessing the Contribution of Ontology Based Software
Redocumentation Approach to Support Program Understanding. Computing and
Informatics 40, 5 (2021), 1025–1055. https://doi.org/10.31577/cai_2021_5_1025

[41] Roy Oberhauser and Carsten Lecon. 2017. Virtual Reality Flythrough of Program
Code Structures. In Proceedings of the Virtual Reality International Conference -
Laval Virtual 2017 on - VRIC ’17. ACM Press, Laval, France, 1–4. https://doi.org/
10.1145/3110292.3110303

[42] Vaclav Rajlich. 2000. Incremental Redocumentation Using theWeb. IEEE Software
17, 5 (Sept. 2000), 102–106. https://doi.org/10.1109/52.877875

[43] Andreas Schreiber, Lisa Nafeie, Artur Baranowski, Peter Seipel, and Martin
Misiak. 2019. Visualization of Software Architectures in Virtual Reality and
Augmented Reality. In 2019 IEEE Aerospace Conference. IEEE, Big Sky, MT, USA,
1–12. https://doi.org/10.1109/AERO.2019.8742198

[44] B. Shneiderman. 1996. The eyes have it: a task by data type taxonomy for infor-
mation visualizations. In Proceedings 1996 IEEE Symposium on Visual Languages.
IEEE Comput. Soc. Press, Boulder, CO, USA, 336–343. https://doi.org/10.1109/
VL.1996.545307

[45] Harry Sneed and Chris Verhoef. 2019. Re-implementing a legacy system. Journal
of Systems and Software 155 (Sept. 2019), 162–184. https://doi.org/10.1016/j.jss.
2019.05.012

[46] Frank Steinbrückner and Claus Lewerentz. 2013. Understanding software evolu-
tion with software cities. Information Visualization 12, 2 (April 2013), 200–216.
https://doi.org/10.1177/1473871612438785

[47] Scott Tilley. 1998. A Reverse-Engineering Environment Framework:. Technical
Report. Defense Technical Information Center, Fort Belvoir, VA. https://doi.org/
10.21236/ADA343688

[48] Juraj Vincur, Pavol Navrat, and Ivan Polasek. 2017. VR City: Software Analysis
in Virtual Reality Environment. In 2017 IEEE International Conference on Soft-
ware Quality, Reliability and Security Companion (QRS-C). IEEE, Prague, Czech

https://doi.org/10.1109/ISACV.2018.8354085
https://doi.org/10.1109/VISSOFT.2013.6650527
https://doi.org/10.1145/2635868.2635891
https://doi.org/10.1109/VISUAL.2004.39
https://doi.org/10.1109/APVIS.2007.329288
https://doi.org/10.1109/TVCG.2010.110
https://doi.org/10.1109/TSE.2009.19
https://doi.org/10.1109/ICGSE.2016.19
https://doi.org/10.1109/VISSOFT.2015.7332423
https://doi.org/10.1109/VISSOFT.2015.7332423
https://doi.org/10.1109/SANER48275.2020.9054838
https://doi.org/10.1109/SANER48275.2020.9054838
https://doi.org/10.1007/s11334-005-0019-8
https://doi.org/10.1109/VISSOF.2005.1684317
https://doi.org/10.1109/VISSOF.2005.1684317
https://doi.org/10.1109/VISSOFT55257.2022.00020
https://doi.org/10.1145/3468264.3473128
https://doi.org/10.1145/3468264.3473128
https://www.inf.usi.ch/lanza/Downloads/Hoff2023b.pdf
https://doi.org/10.1109/IV.2000.859756
https://doi.org/10.1109/IWSC53727.2021.00009
https://doi.org/10.1109/VISSOFT55257.2022.00016
https://doi.org/10.1109/VISSOFT55257.2022.00016
https://doi.org/10.1016/j.infsof.2022.107007
https://doi.org/10.1016/j.infsof.2022.107007
https://doi.org/10.1109/TSE.2003.1232284
https://doi.org/10.1016/j.scico.2012.04.007
https://doi.org/10.1109/VISSOFT.2018.00014
https://doi.org/10.1109/ICSM.2013.76
https://doi.org/10.1109/VISSOFT.2018.00020
https://doi.org/10.1109/SANER.2015.7081857
https://doi.org/10.1109/SANER.2015.7081857
https://doi.org/10.31577/cai_2021_5_1025
https://doi.org/10.1145/3110292.3110303
https://doi.org/10.1145/3110292.3110303
https://doi.org/10.1109/52.877875
https://doi.org/10.1109/AERO.2019.8742198
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1016/j.jss.2019.05.012
https://doi.org/10.1016/j.jss.2019.05.012
https://doi.org/10.1177/1473871612438785
https://doi.org/10.21236/ADA343688
https://doi.org/10.21236/ADA343688


ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adrian Hoff, Mircea Lungu, Christoph Seidl, and Michele Lanza

Republic, 509–516. https://doi.org/10.1109/QRS-C.2017.88
[49] Richard Wettel and Michele Lanza. 2008. CodeCity: 3D visualization of large-

scale software. In Companion of the 13th international conference on Software
engineering - ICSE Companion ’08. ACM Press, Leipzig, Germany, 921. https:
//doi.org/10.1145/1370175.1370188

[50] Richard Wettel, Michele Lanza, and Romain Robbes. 2011. Software systems as
cities: a controlled experiment. In Proceeding of the 33rd international conference
on Software engineering - ICSE ’11. ACM Press, Waikiki, Honolulu, HI, USA, 551.

https://doi.org/10.1145/1985793.1985868
[51] Sandra Yin and Julia Mccreary. 1992. Myths and realities: Defining re-engineering

for a large organization. In NASA. Goddard Space Flight Center, Proceedings of the
Seventeenth Annual Software Engineering Workshop.

[52] P. Young and M. Munro. 1998. Visualising software in virtual reality. In Pro-
ceedings. 6th International Workshop on Program Comprehension. IWPC’98 (Cat.
No.98TB100242). IEEE Comput. Soc, Ischia, Italy, 19–26. https://doi.org/10.1109/
WPC.1998.693276

https://doi.org/10.1109/QRS-C.2017.88
https://doi.org/10.1145/1370175.1370188
https://doi.org/10.1145/1370175.1370188
https://doi.org/10.1145/1985793.1985868
https://doi.org/10.1109/WPC.1998.693276
https://doi.org/10.1109/WPC.1998.693276

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Software Visualization
	2.2 Software Documentation and Note Making

	3 Collaborative Software Exploration and Note Taking in VR
	3.1 Collaborative Interactive VR Visualization
	3.2 Collaborative Note-Taking on VR Multi-Media Whiteboards

	4 Case Study with Practitioners
	4.1 Tool Implementation
	4.2 Case Study Procedure
	4.3 Subject System
	4.4 Participants
	4.5 RQ1: How do engineers explore and take notes of a software system in a collaborative VR software exploration and note taking tool?
	4.6 RQ2: What strengths and weaknesses do engineers perceive in using a collaborative VR software exploration and note taking tool?
	4.7 RQ3: What type of insights do engineers extract from a system when using a collaborative VR software exploration and note taking tool?
	4.8 Discussion of Results and Lessons Learned
	4.9 Reflections and Threats to Validity

	5 Conclusion and Future Work
	Acknowledgments
	References

